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the distance L (to) diminishes. For o = 1 when the characteristic dimension of the de- 

formation pattern is commensurate with v z, the quantity L (1,) is commensurate with 
1. But for o = 2 the characteristic dimension of the deformation pattern and the quan- 
tity L (to) become commensurate with h. This also indicates that the dynamic processes 

corresponding to the values o > 2 are essentially three-dimensional in nature. 
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On the basis of results in [ 11, a derivation is given of the fundamental Hertz re- 

lationships for the compression of anisotropic (orthotropic) bodies which differs 
from [a]. It is shown that if the elastic constants satisfy some additional condi- 
tions, then the domain of contact is a circle in the compression of axisymmetric 
bodies along their common axes of geometric symmetry. 

1. Formulation of the problem and itr #oluiion.Two bodies initially 
touching at a point and subjected to compressive forces P have a common elliptical 
contact area after deformation because of its smallness. If .a1 and z2 are in the same 
direction as the internal normals to the surfaces bounding the bodies at the point oftheir 
initial contact, then the 2, y axes in the common tangent plane can always be selected 

SO that the equality 
Wi -/- w2 = 6 - x2 / 2R, - y2 / 2R, (1.1) 

would hold in the contact domain. Here Wj are elastic displacements of the body points 
in the Zj direction, 6 is the approach of the bodies, Rj are specified and determined 
by the shape of the bodies in the neighborhood of their initial contact point Cl]. The 
pressure domains of the bodies are replaced by half-spaces in the computation of Wj be- 
cause of the smallness of the dimensions. Therefore, in conformity with Cl], the stress 
on the pressure area is determined by 

o, = 3P (2nab)-1 (1 - 52 / us - y2 / b2) 
(1.2) 
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in the absence of friction. There are no stresses on the half-space boundaries outside 
this area. 

The corresponding loading function is [l] 

1 (I. 3) 

P kS = (cm + f3y + Y,+) A-‘, a = cos 0, fi = sin 0 

Taking into account its limit value for Zj = 0 and the choice of the logarithm bran- 
ches mentioned in 01, we obtain 

wj = 
A$ Akj 

iT (&_ “:2”$yzp2)$ (1.4) 
Oj 

The values of L\kjc3), Lkj, A,,, A are indicated in Cl]. Substituting into (1.1) and 

equating coefficients of identical powers, we derive the fundamental relations 

(I. 5) 3p 
4n (nb)1’2 

‘I’m ~ Rei, A~~~~ “2” -6 

o j=l k=l 

a, = a, cc2 = p 

The equalities (1.5) and (1.6) permit finding the semi-axes a, b of the elliptical con- 
tact area and the approach 6 of the bodies. In fact, if E is the eccentricity of the desi- 
red ellipse, then A = [(u / 6) (1 - P’E~)I’/~ and we derive from (1.6) 

(1.7) 

G)pa-3 \ FJ zl 
Re iA$AkjA&? (1 -- p2c2)-3/2 &I = R;l + R;l (1. 8) 

0 j=lk=l 

*/22 3 

5 2 2 ReiA(,3AkjA;; ( a2 - F) (1 - P2.5*)-3M8 = 0 
o j=lk-1 

x'22 3 

Determining E from (1.7) and substituting into (1.8), we find cl and then b, 6. It is 
easy to verify that (1. 5) - (1.8) go over into the appropriate Hertz relationships for an 
isotropic medium. 

2. Particular case of an orthotropic body, In the general case of an 
orthotropic body, b # a during compression of axisymmetric bodies along their com- 
mon axes of geometric symmetry, as is seen from (1.6). i.e. the pressure domain has 
the shape of an ellipse. However, it is circular if the elastic constants of the media sa- 
tisfy the conditions 

Bj = A,, l~“i = Lj, Gj, = f’j (i = 1, ‘) (2.1> 

In fact, (1.3) in [1] can be written under the conditions (2.1) as (we limit ourselves to 
an analysis of the relationships for one medium by omitting the subscript) 

(2.2) 
3 3 :t 

2 (Yk5 + Lv,3 -+ EYk) w,i = -g 2 (Yh.4 - D) Wii = 0, 2 vh.2w,, -: 0 
h-=1 k=l /i=l 



Hertz problem on compression of anisotropic bodies 1025 

E = (1 / CL2) {N [AC - F (L $ F)l + K” [C (A $ II)- 2F (L + F)l cq’> 

L = (1 : CL) [C (A + 1V) - F (L _t- F)l (2.3) 
D = (1 / LF) [AN -I- K, (A + H) a’P2], ii, x A - 2N - H 

Here vh are the roots of Eqs. (1.2) from paper Cl]. Reducing the fraction by (vr - Ye) x 
(v, - va) (~a - vl) , we deduce from (2.2) 

2;r 

w (2, y, 0) = ’ Re i -$ d0 
I 

(2.4) 
II 

Here 
Ai* = - (vi + v2) (v, + ~a) (va + vi) (L + F) / CL (2.5) 

Si (Sz f L) + Il v$ + Lvs3 _i- EQ A23 

A,,* = sz + si, ~24 - D (2.2 + T3) (v22 + v32) (2.6) 

i 2.?2 VP + y3 

s, = VI + v, + 2'3, 11 = VlV2V3 (2.7) 

Sik = VlVz + V*V3 + V3V1, Sz = VI2 + Vz2 + V32 

A 23 = v3 4 + v33v2 + v32v22 + V3V13 -+- vz4 + L (Y32 + vsv.L $ 

vx2) + E 

Expanding the determinant (2.6) we obtain 

A,* = ID (S? + L) + IT21 Sik - (E $ L) IIS, + E - v12vz2 - (2.8) 

2 a- v, v3 v32v12)D f LI.12 

It is easy to verify that D (S, j- L) + II2 = 0. Furthermore, we have 

v1%a2 + vzzv3a + v32v1a = (1 / CL*) {iv MC - (L + F)21 + (2.9) 

L2 (A -i- N) 4- KO [C (A f II) - 2 (L + F)2] a2P2} 

‘v ?v $2 1 2 =-FDIC (2. IO) 

Let us consider S, = vr + v2 + v3. Here the vk are understood to be the roots of 
(1.2) from [l] with positive imaginary part for all CC, 13. Their existence is assured by 

the requirement of total ellipticity of the equilibrium equations of the anisotropic me- 
dia under consideration (otherwise, the real characteristics of these equations are easily 

constructed ). 

It follows from (2.10) that there are two possibilities: (a) all the vk2 are negative reals 
(in this case all the vkare pure imaginary), (b) one of the vk2? say vra is a negative 

real quantity and the rest are complex conjugate. Here vi = in,, n, > 0; v2 = 

m + in,,, v3 = - m + inO, no > 0. In both cases we have: S, = in, n > 0. 
From (2.10) we deduce 

II=--iJfFD/C (2.11) 

The minus sign should be taken in front of the square root since yr = vs = v3 = i, 
n = - i in the case of isotropic medium. Takingintoaccount the values of the quan- 
tities mentioned, we obtain 
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- A,* = (L + F) I CL [(AC - F2) I C - ~K,cz~/~~I D + CL 12) 

(1 / LF) {N (AC - F2) + Ko [(A + H) C - 2F21 a”/~“} Jf&) / Cn 

If the elastic constants are positive and subject to the inequalities 

UC-F*>O, A>H (2.13) 

then the right side of (2.12) is positive. The conditions (2.13) are satisfied for all real 

anisotropic bodies of the class under consideration, which are presented in [3]. Further- 
more we have A,* = iA,**, where A * * > 0 in both the above -mentioned cases. 

Therefore, assuming A,* = - A,,**,. Art** > 0, we obtain for all a, fi 
:< 

c Re iA.‘,)A,Ai’ - ” 
k=l 

-;>0 (2.14) 
0 

It is seen that the expression (2.14) depends only on o2, fia and is symmetric relative 
to these arguments. Thus. Eq, (1.7) is written as 

nla 

’ 
s 

T (a2, P”) (u* - R2R;‘p2) (1 - P~E~)-VS&I = 0 (2.15) 
0 

T (a23 P") = ,$ i Re iA$A,jAi/ > 0, 
i-1 k=l 

T (aa, ~2) = T (~2, aa) 

for media satisfying the conditions (2.1). 

Let us prove the following result. If RI = R, = R, then F = 0. In fact, in this 

case we have xi2 
l 

\ 
T (a2, p”) (a2 - p”) (1 - P22)-Vn ai3 = 0 (2.16) 

;, 
Hence, changing the variable of integration and assuming 0t = 0 - n / 2, we deduce 

n12 . 

s 
T (a", j32) (a2 - p") (1 - c?&y/, de = 0 (2.17) 

Subtracting (2.17) fro: (2.16) we obtain 
xl2 

a‘2 ‘. 
I 

T1 (u2 - p’)” de = 0 (2.18) 
0 

Here 
TL = T [2 - $ + (E,E,)%] (E&)-v2 [El’/? + E,‘,t] 

El = 1 - a2e2, E, = 1 - fi2e2 

Sin= T1 > 0, the integral in (2.18) is then different from zero and, consequently, 

E = 0, q.e.d. 
Let us introduce the notation 

n/z :i 
‘j T (a”, ~2) de = m, = m: + rng, mj" = 2 zl Re i A?/&&; 

then 0 

7712 X!Z 

5 T(a2,p2) a2d0 = \ T (a2,f32)P2de = $ m, 

0 0 
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From (1.6) we derive formulas for the radius of the contact circle a and the approach 
of the bodies 6 

a = [3 (8n)-1RPm,l’~~, 6 = [3 (8n)-1PR’h,l*~~ (2.19) 

According to (1.4) the elastic displacements of points of the bodies on the contact sec- 

tion are determined by the formulas 

Wj = T7Lj07Tlow1 (6 - p2/2R), p2 =x2+ y2 (2.20) 

The relationships (2.19X (2.20) differ from the corresponding Hertz formulas for an iso- 

tropic medium just by the value of the constants mo, mj’ . 

REFERENCES 

1. Sveklo, V. A., The action of a stamp on an elastic anisotropic half-space. 

PMM Vol. 34, NQ 1, 1970. 

2. Willis, J,R., Hertzian contact of anisotropic bodies. J. Mech. and Phys. of 
Solids, Vol.14, w 3, 1966. 

3. Love,A., Mathematical Theory of Elasticity. (Russian translation), ONTI, 
Moscow -Leningrad, 1935, 

Translated by M. D, F. 

UDC 539.3 

CONTACT PROBLEM FOR A PLANE CONTAINING A SLIT OF VARIABLE WIDTH 

PMM Vol.38, N’6, 1974, pp.1084-1089 
L. T. BOIKO and P. E. BERKOVICH 

(Dnepropetrovsk) 

(Received November 19, 1973) 

The problem of compression of an elastic plane with a slit of variable width 
commensurate to the elastic strains is considered. The case of the origination 

of several contact sections of the slit edges is investigated. Adhesion of the edges 
hence occurs at some part of the contact area, while slip is possible at the rest 

of this area. A solution of the problem is obtained in quadratures by the Muskhe- 

lishvili method using the apparatus of linear conjugates of analytic functions. 
The stress and displacement potentials are found, the magnitudes of the contact 
sections and the adhesion zones are determined. A specific example is analyzed 

and numerical computations are carried out. 
The contact problem for a plane weakened by a constant-width rectilinear slit 

has been considered in [l - 31. 

1. An infinite elastic isotropic plane is weakened by a variable width rectilinear 
slit /z, (z) commensureate with the elastic strains. The plane is compressed by uniformly 
distributed stress resultants with components P and T (Fig. l), applied at infinity. The 
slit edges make contact along the sections (ok, bk) during deformation. Each contact 
area consists of an adhesion section of the edges (ck, dk) and two sections (ok, ck) 
and (dk, @k) on which slip is possible. 

Let us use the notation: L1 is the set of adhesion sections, L, is the set ofslipsections, 


